Power Behaviour: No Real TDP, but Wide Range

Last year when we reviewed the M1 inside the Mac mini, we did some rough power measurements based on the wall-power of the machine. Since then, we learned how to read out Apple’s individual CPU, GPU, NPU and memory controller power figures, as well as total advertised package power. We repeat the exercise here for the 16” MacBook Pro, focusing on chip package power, as well as AC active wall power, meaning device load power, minus idle power.

Apple doesn’t advertise any TDP for the chips of the devices – it’s our understanding that simply doesn’t exist, and the only limitation to the power draw of the chips and laptops are simply thermals. As long as temperature is kept in check, the silicon will not throttle or not limit itself in terms of power draw. Of course, there’s still an actual average power draw figure when under different scenarios, which is what we come to test here:

Apple MacBook Pro 16 M1 Max Power Behaviour

Starting off with device idle, the chip reports a package power of around 200mW when doing nothing but idling on a static screen. This is extremely low compared to competitor designs, and is likely a reason Apple is able achieve such fantastic battery life. The AC wall power under idle was 7.2W, this was on Apple’s included 140W charger, and while the laptop was on minimum display brightness – it’s likely the actual DC battery power under this scenario is much lower, but lacking the ability to measure this, it’s the second-best thing we have. One should probably assume a 90% efficiency figure in the AC-to-DC conversion chain from 230V wall to 28V USB-C MagSafe to whatever the internal PMIC usage voltage of the device is.

In single-threaded workloads, such as CineBench r23 and SPEC 502.gcc_r, both which are more mixed in terms of pure computation vs also memory demanding, we see the chip report 11W package power, however we’re just measuring a 8.5-8.7W difference at the wall when under use. It’s possible the software is over-reporting things here. The actual CPU cluster is only using around 4-5W under this scenario, and we don’t seem to see much of a difference to the M1 in that regard. The package and active power are higher than what we’ve seen on the M1, which could be explained by the much larger memory resources of the M1 Max. 511.povray is mostly core-bound with little memory traffic, package power is reported less, although at the wall again the difference is minor.

In multi-threaded scenarios, the package and wall power vary from 34-43W on package, and wall active power from 40 to 62W. 503.bwaves stands out as having a larger difference between wall power and reported package power – although Apple’s powermetrics showcases a “DRAM” power figure, I think this is just the memory controllers, and that the actual DRAM is not accounted for in the package power figure – the extra wattage that we’re measuring here, because it’s a massive DRAM workload, would be the memory of the M1 Max package.

On the GPU side, we lack notable workloads, but GFXBench Aztec High Offscreen ends up with a 56.8W package figure and 69.80W wall active figure. The GPU block itself is reported to be running at 43W.

Finally, stressing out both CPU and GPU at the same time, the SoC goes up to 92W package power and 120W wall active power. That’s quite high, and we haven’t tested how long the machine is able to sustain such loads (it’s highly environment dependent), but it very much appears that the chip and platform don’t have any practical power limit, and just uses whatever it needs as long as temperatures are in check.

  M1 Max
MacBook Pro 16"
Intel i9-11980HK
MSI GE76 Raider
  Score Package
Power
(W)
Wall Power
Total - Idle
(W)
Score Package
Power
(W)
Wall Power
Total - Idle
(W)
Idle   0.2 7.2
(Total)
  1.08 13.5
(Total)
CB23 ST 1529 11.0 8.7 1604 30.0 43.5
CB23 MT 12375 34.0 39.7 12830 82.6 106.5
502 ST 11.9 11.0 9.5 10.7 25.5 24.5
502 MT 74.6 36.9 44.8 46.2 72.6 109.5
511 ST 10.3 5.5 8.0 10.7 17.6 28.5
511 MT 82.7 40.9 50.8 60.1 79.5 106.5
503 ST 57.3 14.5 16.8 44.2 19.5 31.5
503 MT 295.7 43.9 62.3 60.4 58.3 80.5
Aztec High Off 307fps 56.8 69.8 266fps 35 + 144 200.5
Aztec+511MT   92.0 119.8   78 + 142 256.5

Comparing the M1 Max against the competition, we resorted to Intel’s 11980HK on the MSI GE76 Raider. Unfortunately, we wanted to also do a comparison against AMD’s 5980HS, however our test machine is dead.

In single-threaded workloads, Apple’s showcases massive performance and power advantages against Intel’s best CPU. In CineBench, it’s one of the rare workloads where Apple’s cores lose out in performance for some reason, but this further widens the gap in terms of power usage, whereas the M1 Max only uses 8.7W, while a comparable figure on the 11980HK is 43.5W.

In other ST workloads, the M1 Max is more ahead in performance, or at least in a similar range. The performance/W difference here is around 2.5x to 3x in favour of Apple’s silicon.

In multi-threaded tests, the 11980HK is clearly allowed to go to much higher power levels than the M1 Max, reaching package power levels of 80W, for 105-110W active wall power, significantly more than what the MacBook Pro here is drawing. The performance levels of the M1 Max are significantly higher than the Intel chip here, due to the much better scalability of the cores. The perf/W differences here are 4-6x in favour of the M1 Max, all whilst posting significantly better performance, meaning the perf/W at ISO-perf would be even higher than this.

On the GPU side, the GE76 Raider comes with a GTX 3080 mobile. On Aztec High, this uses a total of 200W power for 266fps, while the M1 Max beats it at 307fps with just 70W wall active power. The package powers for the MSI system are reported at 35+144W.

Finally, the Intel and GeForce GPU go up to 256W power daw when used together, also more than double that of the MacBook Pro and its M1 Max SoC.

The 11980HK isn’t a very efficient chip, as we had noted it back in our May review, and AMD’s chips should fare quite a bit better in a comparison, however the Apple Silicon is likely still ahead by extremely comfortable margins.

Huge Memory Bandwidth, but not for every Block CPU ST Performance: Not Much Change from M1
Comments Locked

493 Comments

View All Comments

  • web2dot0 - Tuesday, October 26, 2021 - link

    You just made his case. 😂
  • melgross - Monday, October 25, 2021 - link

    We’re all ready seeing optimized software from Blackmagic, and others. Blackmagic is claiming anything from 2 times to over 7 times performance gains in Resolve 17.4 with the 32 core Max.

    Apple also has a power mode that we can access which will turn the fans to max level for extra performance. I’m looking to try that when my 16” comes in a few days. I wonder if that feature was tested, as it wasn’t mentioned.

    Gaming, well, yeah. Over the decades most ports were bad. I don’t have any thought that the ones tested here were much better. Then running under Rosetta 2, as good as it is, isn’t helping.
  • daveinpublic - Monday, October 25, 2021 - link

    Huh, nice way to hijack the top comment.
  • name99 - Monday, October 25, 2021 - link

    So nothing changes.
    Gamers have always hated Apple. Doesn't change.
    Developers have been uninterested in Apple. Probably doesn't change.

    None of this matters to Apple, or most of its customers. Doesn't change.

    *Perhaps* Apple will make some attempt to grow Arcade upwards, but honestly, why bother? Almost all the ranting about gaming HW in threads like this is trash talk and aspirational; it does no translate into purchases, certainly not of Apple HW, and usually not of Wintel HW. It's no different from the sort of comments you might read on a Maserati vs Ferrari comment board -- and as uninteresting and unimportant to either the engineers at both companies, or most of the *actual* customers.
  • web2dot0 - Tuesday, October 26, 2021 - link

    Developers love MacBookPro what are you talking about?!?
  • mlambert890 - Tuesday, October 26, 2021 - link

    He's talking about *game developers* targeting MacOS. Not that in developers in general tend to like MacBooks (although certainly not Windows developers obviously)
  • TheinsanegamerN - Tuesday, October 26, 2021 - link

    Apple developers love macbook pros. The rest of the world sees them for the overpriced shiny facebook machines they've become. Gone are the days of the 2010 era tank macbook pros that lasted forever, chromebooks have better build quality and longer lifespans then modern apple products.
  • steven4570 - Friday, October 29, 2021 - link

    "The rest of the world sees them for the overpriced shiny facebook machines they've become. "

    Not really
  • Hrunga_Zmuda - Monday, October 25, 2021 - link

    It's not M1X. There are two chips, M1 Pro and M1 Max.

    I'm guessing that next year, the entry level chips will be M2 and the big boys will be M2 Pro and M2 Max.
  • TedTschopp - Monday, October 25, 2021 - link

    The money in the gaming space is in mobile gaming, not in AAA gaming, and Apple is the leader in Mobile Gaming Revenue. So the classic pattern here would be for them to leverage themselves from the leader in the low-end market into a leader in the high-end market.

    And with their first attempt at a gaming class machine, they came out with something in the first quartile. Next year, when the M2 Pro and Max, my guess is that they will be accelerating faster then their competition as their development and design processes have been designed to out compete mobile competitors, not desktop competitors like Intel and NVidia.

Log in

Don't have an account? Sign up now